RIEMANN-STIELTJES OPERATOR FROM MIXED NORM SPACES TO ZYGMUND-TYPE SPACES ON THE UNIT BALL

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Integral-Type Operator from Zygmund-Type Spaces to Mixed-Norm Spaces on the Unit Ball

and Applied Analysis 3 2. Auxiliary Results In this section, we quote several lemmas which are used in the proofs of the main results. The first lemma was proved in 2 . Lemma 2.1. Assume that φ is a holomorphic self-map of , g ∈ H , and g 0 0. Then, for every f ∈ H it holds [ P g φ ( f )] z f ( φ z ) g z . 2.1 The next Schwartz-type characterization of compactness 28 is proved in a standard way...

متن کامل

Products of Radial Derivative and Multiplication Operator between Mixed Norm Spaces and Zygmund–type Spaces on the Unit Ball

In this paper, we obtain some characterizations of the boundedness and compactness of the products of the radial derivative and multiplication operator RMu between mixed norm spaces H(p, q, φ) and Zygmund-type spaces on the unit ball. Mathematics subject classification (2010): 47B38, 47G10, 32A10, 32A18.

متن کامل

On an Integral-type Operator from Mixed Norm Spaces to Zygmund-type Spaces (communicated by Professor

This paper studies the boundedness and compactness of an integraltype operator from mixed norm spaces to Zygmund-type spaces and little Zygmund-type spaces.

متن کامل

Zygmund-Type Spaces on the Unit Ball

Let H B denote the space of all holomorphic functions on the unit ball B ⊂ C. This paper investigates the following integral-type operator with symbol g ∈ H B , Tgf z ∫1 0 f tz Rg tz dt/t, f ∈ H B , z ∈ B, whereRg z ∑n j 1 zj∂g/∂zj z is the radial derivative of g. We characterize the boundedness and compactness of the integral-type operators Tg from general function spaces F p, q, s to Zygmund-...

متن کامل

Generalized Composition Operator from Bloch–type Spaces to Mixed–norm Space on the Unit Ball

Let H(B) be the space of all holomorphic functions on the unit ball B in CN , and S(B) the collection of all holomorphic self-maps of B . Let φ ∈ S(B) and g ∈ H(B) with g(0) = 0 , the generalized composition operator is defined by C φ ( f )(z) = ∫ 1 0 R f (φ(tz))g(tz) dt t , Here, we characterize the boundedness and compactness of the generalized composition operator acting from Bloch-type spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2013

ISSN: 1027-5487

DOI: 10.11650/tjm.17.2013.3090